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Abstract—In this paper we consider a voltage control problem
in power distribution grids. The specific goal is that of keeping
the voltages within pre-assigned operating limits by commanding
the reactive power output of the micro-generators connectedo
the grid. We propose three strategies. The first two strategies
are purely local, meaning that each micro-generator updates
the amount of reactive power to be injected based only on
local measurements of the voltages’ magnitude. Instead the thdr
one is distributed, namely, the micro-generators, to perform
the updating steps, require some additional information coming
from the neighboring agents. The local strategies are simpler
to be implemented but they might fail in solving the voltage
control problem. Instead, the distributed one requires the micre
generators to be endowed with communication capabilities but it
is effective in driving the voltages within the admissible intervals
and, additionally, it exploits the cooperation among the agents
to reach also a power losses minimization objective. Theoretical
analysis and extensive numerical simulations are provided to
confirm the arguments aforementioned.

I. INTRODUCTION

injecting (or of absorbing) reactive power together withivaec
power [4].

The highly fluctuating behaviors of the renewable energy
sources, call forpurely local or distributed approaches to
deal with the voltage regulation problefurely local means
that agents use just local measurements and do not exchang
information with each othedistributedmeans that agents, that
are physically close, are allowed to communicate and caresha
information to cooperatively reach the pre-assigned dbjes.

The purely local strategies (see [5], [6], [7], [8], [9], 10
[11]) typically aim to guarantee that voltage constraints a
satisfied. Distributed strategies (see [12], [13], [14]5])1
beside local voltage constraints, take into account otiver i
portant global objectives, e.g., power losses minimizatio
and drive the state system towards configurations which are
obtained solving the so-calledptimal reactive power flow
(ORPF) problems. Strategies in [12], [13], [14] reformalat
ORPF problems as a rank-constrained semidefinite programs
convexify them by eliminating the rank constraint and pdevi
solutions in a distributed manner through standard optition

Recent technological advances, together with environahent algorithms. However, these approaches require the mandtor

and economic challenges, have been motivating the massiv# all the buses of the grid, which, in general, is not amemabl
deployment of small power generators in the low voltageof practical implementation in the distribution grid. Thssue
and medium voltage power distribution grid [1]. On oneis overcome in [15] where not all the buses are required to
hand, significant benefits to the network operation couldeeombe monitored. The algorithm proposed in [15] is based on the
from the availability of a large number of these generatorsalternating actuation of the two following steps: gathgnmolt-
in the distribution grid. They could to provide a number of age measurements at the micro-generators buses and gpplyir
ancillary services, e.g., voltage profile improvementduction  control laws based on these measured data.
of line losses, reduction of power generation cost, just 10 Tpree voltage control strategies are proposed in this paper
mention a few [2], that are of great interest for the gridThe first two strategies (denoted as LVC-1 and LVC-2) are
management. On the other hand, the uncontrolled injectiofyrely local. They are based on the classical droop cogtioll
of power from several renewable energy sources can caugfascribed in [4]. They exhibit a fast transient properties are
serious system damages or system instabilities. For iosfan shown to converge to a steady state which, however, in genera
operational bounds may be violated due to the intermittencg not guaranteed to meet the voltage constraints. At this
of the renewable sources, as large voltages variationstmighegard, we provide a numerical example where for both LVC-1
occur. For these reasons, voltage regulation is a fundahentyng | \vC-2, the micro-generators are not effective in retijutg
issue in the development of the futlsmart distribution grid  he voltage between the desired limits, even if the avalabl
In the past, electro-mechanical control devices, suchastsh reactive power resources would allow it, if properly dispetd.
capacitor banks or on-load tap changers [3], have been useghis issue is overcome by the third strategy (denoted as f-
to perform voltage control in distribution networks. Ho®ev  pORPF) which is a novel distributed algorithm improving the
they are typically too slow to properly respond to the vo#tag performance of the distributed strategy introduced in [t
fluctuations due to the high variability of the load demandpnsied as DORPF). Remarkably, in [15], it is shown that adding
and of the energy resources, while inverters can act on a fagiformation exchanges between neighboring nodes allos th
timescale in the grid. This has motivated the recent in@ngas pORPF algorithm to solve the voltage control problem while
interest for strategies that regulate the voltage magesiuty 550 reaching a power losses minimization objective. Hawev
directly actuating the injection (or absorption) of the mic  pORPF exhibits poor transient performance, namely, it re-
generators reactive power; indeed, when running below theiyires a consistent number of iterations to approach thimapt
rated output current, many inverters have the capability o&gjution. The main idea behind the f-DORPF algorithm we
G Cavaro _and R Cali _are wih Deparment. of Propose in this paper is that of combining the updating steps
Information  Engineering,  University  of |%|y. Email Of DORPF with those of the purely local strategy LVC-2, thus
{cavraro, carlirug}@lei.unipd.it. obtaining fast transient properties and convergence tsahee

the
Padova,



steady-state of the DORPF, i.e, the operating conditioes ar
satisfied and the power losses are minimized.

The paper is organized as follows. A model of the distri-
bution network is provided in Section Ill. In Section IV, we

introduce the problem of regulating the voltages magngude

through the reactive power injected by the micro-genesator
Section V and in Section VI, we illustrate, respectivelyg tivo
purely local strategies and the distributed strategy. IFinae

analyze and compare the performance of the various steategi

in Section VII.

II. NOTATION AND MATHEMATICAL PRELIMINARIES
Let us denote byg = (V,&) a undirected graph, where

Y and £ denote, respectively, the set of nodes and the s

of edges. Assume that = |V| andr = |£|. Given two
nodesh,k € V, we define the pattP,, = (v1,...,v,) as
the sequence of nodes, without repetitions, such that h,
Vg k and for each: 1,...,¢4 — 1, the nodesuv;
and v;y; are connected by an edge. Given a vecioru
denotes its complex conjugate, whilé denotes its transpose.
Instead,R(u) and &(u) refer to its real and imaginary part
(element-wise), respectively. Let the symbbl denote the

column vector whose elements are all equal to one, whil
the symbole, denote the column vector whose elements are

all equal to0, except itsv-th entry which is equal tol.
Given w,w,w € R, with w;, < wp,h = 1,...,¢, let the
operator[w]® be the component-wise projection afin the
set{z e R* 1w, <z, <Wy,h=1,...,¢}, thatis,

B wy,  if wy, <wp < W
([w]iﬁ) = { wy, i wy, <wy, (1)
/R wy, if wy, > wy
Given a real number we define the function sidgm) as
. xf|x| fx#0
sign(z) = { A 2)

Given a matrixA, we denote withp(A) its spectral radius,
namely, the largest eigenvalue in absolute value.

Il1l.  SMART GRID CYBER-PHYSICAL MODEL

In this paper, we describe themart power distribution
network as a cyber-physical system, where phgsical layer
is composed by the power distribution infrastructure idotg

Figure 1. Circuital representation of a microgrid, whereckldiamonds are
micro-generators, white diamonds are loads, and the left-slestent of the
circuit represents the PCC.

e\\}\/e model the PCC as an ideal sinusoidal voltage generator
(slack bu$ at the grid nominal voltagé/,y. Without loss of
generality, we label the PCC as nodeand we assume its
voltage phase to be equal o The powerss;, corresponding

to grid loads are such tha, < 0, which means that active
power is suppliedto the devices, while, when dealing with
power micro-generators, we have that > 0, which means
that active power isnjected into the grid. The system state
satisfies the following relations

1= Yu, Uy = UN,
upin = pn + jan h # PCC,

3)
(4)

whereY is the bus admittance matrix of the grid. The element
Y. represents the admittance of the line connectingibwith
busk. The Green matrixX € R™*™, which depends only on
the topology of the grid power lines and on their impedances,
is the unique symmetric positive semidefinite matrix, seég,[1
such that

u=Xi+ 1Uy. (5)

In our setup, each micro-generator corresponds tagant

in the cyber layer and belongs to the et C V (with

|C| = m). We assume that the agents are provided g&thsing
capabilities in particular voltage phasor measurement units
(PMU) (devices that measure both magnitude and phase of
the voltages) and wittcomputational capabilitieghat will

be exploited in the proposed algorithms implementation. In
particular, the agents can regulate the amount of reactive
power injected into the grid. To underline the differenceoam
smart agents and passive loads, we adopt the following block

the electric lines, micro-generators, loads and the pofnt odecomposition of the voltage vectar

connection to the transmission grid (denoted as PCC), while
the cyber layerconsists of the intelligent agents which are

deployed in the electric grid.

A convenient way to model the physical layer is by a

directed graphg, where edges ir€ represent the electric

lines, and nodes iV represent both loads and generators
connected to the microgrid (see Figure 1). The following

variables describe the overall state of the system:
e u € C", whereuy, is the voltage at nodg;
e v € R, wherevy, is the voltage magnitude at node
e i C™ whereiy is the current that nodg injects;
e s=p+jqe C", wheresy, p, andqg, are the complex,
the active and the reactive power injected at nade

U= [ul ug uf] s (6)
wherew; is the voltage at the PC@ € C™ are the voltages
at the micro-generators, ang, € C*~™~! are the voltages
at the loads. Similarlys¢ = pg + jgg and sy, = pr + jqr.
Following the same partitioning, we can block-partitidhas

0 0 O
X=|0 M N],
0 NT Q

where M E (mem’]\'[ c (men—m—va c (Cn—m—lxn—m'—ll
The non-linear relation betweanands, can be conveniently



linearized as in [15], by

_ ke N(h
ol o[ @ o 9"

Interestingly, equation (7) can be used to approximate the h
voltages magnitudes as ®
vwel 1 [M Nl[pgl 1 .[M N[ k' ¢ N(h)
B3l A [ A L

(8)

Equation (8) represents a more general version of the widelgigure 2. An example of neighboring cyber layer agents. €irclodes (both
usedlinearized DistFlow modefe.g. in [8], [0, [11), which  Foe 4 R e B e aray Gieled node is an agent
thdS also in ,the case of no radial grids. Equatlons (7) ahd (g]hat do not belong to the s¢t' (k) C C. For each agent € N'(h), there
WI||_ be use_d in the fOllOWIﬂg to model the grid voltages and exists a path that connedtsto k which does not include any other agent.
their magnitude, respectively.

IV. VOLTAGE CONTROL STRATEGIES BASED ON REACTIVE order to maintain the voltages magnitudes within the irgerv

POWER REGULATION [Umin, Umax]- The first two strategies angurely local i.e.,
Classically, the generators regulate the amount of reactiv 1) agenth updatesg, based only on measurements of the
power they inject into the electrical grid, in order to penfo magnitude of its own voltage, that isy;

the voltage contro| i.e., to maintain the voltage magnitudes 2) there is no exchange of information between the agents.

of the buses within a predefined deviation from the nominaln the third strategy, instead, agents can communicate with

voltageUy . Since we assume that only agents can take voltageach other; the exchange of information regards the taken

measurements, we aim at meeting the following constraints measurements and some additional quantities, as we will

describe in Section VI. To properly model the admissible

Umin < Vh < Umax, Vhec. ©) communications in the cyber layer, we next define the set of

where Upnin and Unax denote, respectively, the minimum neighbors of a given agert

and maximum admissible values for the voltages magnitude. Definition 1: Let i € C be an agent. The set of neighbors

Usually, Upin = (1 — &)Uy and Upax = (1 + &)Uy, where  of h, denoted asV'(h), is the subset of defined as

0<g¢< L

In addition, since typically the generators dispersed i th N(h) ={k € CU{1} | 3 Pur, P N C = {h, k}}.

distribution network are of small size, we take into accalsb

constraints on the generation capability of agerSpecifically,

we assume

Gmin,h < qh < Gmax,h s Vhe Cv (10)

Where ¢min, b, gmax,» are, respectively, the minimum and the V. PURELY LOCAL VOLTAGE CONTROL STRATEGIES

maximum amount of reactive power that agéntan inject. In this section we propose two control strategies where each

Typ|Ca”y Gmin,h < 0 Qmax,h > 0 and Gmin,h = —qmax,h- For iti i
Lh TS b ) oo T agenth updatesg;, exploiting only measurements of its own
the sake of simplicity and in order to keep the notation kght voltage magpnitude, i.ex,.

in the following, we will assume that the micro-generatars a
homogeneous, namely, for dlle C,

In Figure 2 we report an example of the neighbors set. In our
setup we assume that every agért C knows its neighbors,
i.e., N(h), and that it can communicate with them.

(11) A. A first local voltage control strategy (denoted as LVC-1)

LVC-1 is a modified version of the reactive power com-

for given gumin, dmax. Based on the constraints in (9) and pensation technique introduced in [4]. To formally deserib
in (10), we introduce a proper definition of the set of the /o 1 let f(v) be defined as

feasible reactive power injection®bserve that, in the setup

Qmin,h = Gmin;, Gmax,h = Qmax;

we described, the quantities;, p;, andq, are assumed to be flv)=Cv+p (12)
constant and that only is actuated in order to regulate;.
Hence, for a given triplépe, pr., q1.), we define where

F(pa,pL, qL) = {qG such that for allh € C it holds (=— Gmax — Gmin 8= ImaxUmax — qminUnmin

Gmin < 9h < @max; Unmin < vp, < Umax} . Umax — Umin’ Umax = Unmin

Since there is no risk of confusion, for the sake of notationaln addition, letf(v) be the saturated version ¢fv) outside
convenience, we omit the dependencefobn (pg, pr,qr). the interval[gmin, ¢max], that is,

In next sections we introduce three strategies, where each )
agent updates the amount of reactive power to be injected in flv) = [f(v)]gj:ij . (13)



h the constraints in (10) to hold for all the compensatorss¢he
Imax === algorithms, similarly to LVC-1 are theoretically proved to
converge to a steady-state which, however, is not guardntee
to satisfy the voltages’ constraints.

U .
i B. A second local voltage control strategy (denoted as LYC-2
qmin O ---- LVC-2 aims at driving all the compensators’ voltage mag-
.. nitudes to a desired valu&,;. Again it is based only on

local measurements, but differently from LVC-1, it does not
Figure 3. Pictorial representation gf (red solid line) andf (blue dashed resort to a droop-like function as the one introduced in .(13)
'g‘e)' 'Ethle Paft'UCU'af case Whethnax = gmin aNdUnmin = (1 —&Un,  Specifically, agent updates the amount of reactive power to

max = (1 +Un. be injected as

qn(t+1) = [gn(t) + € (Ua — vn (1)) ] (17)

dmin

In Figure 3, we provide a pictorial representationfoénd f.

After having taken the measuremenf(t), q(t) is updated Wwheree is a positive constant. Loosely speaking, the rationale
by the h-th agent in the following way behind LVC-2 is as follows: ifv;, < Uy then agenth will
p inject reactive power in order to increasg, while if v, > Uy

an(t+1) = [an(t) + a(f (oa(t)) —an(®)]gre (14)  then agenth will absorb reactive power in order to decrease

wherea is a positive constant. Observe that the equilibrium”hiD-rroheog.(t).g\:]erzg%‘:ﬁs%rgfglrtig?tﬁy‘vﬁ'z _?rrénne_}(t stated.
points for Equation (14) are described Byv); in fact, if positi ' ! gon (7). |

an(t) = f(un(t)) then gu(t + 1) = qu(t). Moreover, if < 2Un (18)
qFlrlin = —{max Umin = (1 - g)UN and Umax = (1 + g)UN: - p(%(M))
then
(= _ Gmax 8= Gmax there exist an-upla (o1, . .., v,,) such thaty (t) — v, for all
EUN’ £’ he{l,...,m}.

The proof of Proposition 2 is reported in Appendix A. Ob-
serve that the above Proposition establishes that, dhtis-
fies condition (18), then the voltages magnitudes converge

and it holds true thaf (Uy) = 0. The following Proposition
characterizes the convergence properties of (14).

Proposition 1: Consider algorithm (14) Then, if to steady state value@,...,7,,). However, in general, it
2 is not guaranteed thai;, = U, for all h € {1,...,m},
LS 1_ Se(SAD)” (15)  and thatt, € [Umin,Umax] €ven if Uy € [Umin, Umax]-
T U~ In Section VII we will provide a numerical example where,
there exists an-upla (o1, . .., 7,,) such thatv,(t) — v, and  thoughUq € [Umin, Umax], there exists at least one agent
an(t) = f (o) forall h e {1,...,m}. such thawy, ¢ [Umin, Umasx]-

Although LVC-1 is based on the quite popular voltage control

strategy introduced in [4], in general, it does not guarante VI. A FAST DISTRIBUTED OPTIMAL REACTIVE POWER

that o;, lies within the interval [Unin, Umax]. If « satisfies FLOW ALGORITHM (DENOTED AS FDORPF)

condition (15), then eacty, converges to a steady-statethat, In this section, we propose a nowibtributedcontrol algo-

in general, might violate the constraints (9). In Sectio, VI (ithm where each agerit, beside local voltage measurements,

we will provide a numerical example where, for some  requires additional information coming from the neighhgri

Up & [Umin, Umax]- _ _ nodes in A (k) to update the amount of reactive power it
Remark 1:As previously said, LVC-1 is based on the jpjects. In addition to a voltage regulation objective, the

strategy proposed in [4], which complies also the IEEE 1847. strategy exploits the cooperation among the agents to riEeim

standard [16]. In [4]g, is updated as follows the power losses on the electric lines; specifically, it aims
Gt +1) = f(vh(t)), (16) g:osbollevrir?g the followingoptimal reactive power flofOPRF)

i.e., g, is set directly equal to the value dictated by the . 7
function f. However, as remarked also by the authors of [4], rf;én R(a"Yu) (192)

the practical execution of (16) could lead to oscillatorydan subject toge; € F (19b)
unstable behaviors which are avoided by ithtegral rule (14).

Remark 2:Other purely local strategies have been proposeavhere ®(u? Yu) are the line active power losses. Indeed, in
in the literature. The algorithm in [8] is provably shown to [15] it is shown how, by exploiting (7), the line power losses
drive the voltages into the operating intervals defined i (9 can be expressed by (19a). The algorithm is derived in the
however the analysis in [8] is carried on only in the limited simplified scenario where all the grid power lines are assume
scenario where all the agents are assumed to be compensattirshave the same resistance/inductance ratio, i.e., thésese
and where no limits on the reactive powers are taken intd@, such that _
account. Instead, the algorithms proposed in [10], [11)ias ze = €z, (20)



for all e € £. Equation (20) is satisfied when the grid is Lagrange multipliers associated with the constraint® ¢,.in
relatively homogeneous, and is reasonable in most practicand q;, < @¢mnaee, respectively. Moreover, the symbal,,
cases. However, in Section VII, we simulate the algorithm indenotes the admittance of the electrical path between sigent
the more realistic scenario where (20) does not hold. It @n bh and ¢ which is assumed to be known by both agénand
shown (see [15] for the detais) that, under approximatign (7agent(. Also the positive parameteesandy are assumed to
and under (20), the cost function (19a) is a quadratic foncti be a-priori assigned (in particular,satisfying (18)).

on g¢ and F is a convex set oig. Indeed, we have that

Algorithm 1 f-DORPF

R(M R(N R
R(a"Yu) ~ gf [(]2 )QG + 244 [5.2 )QL +aq; [ﬁg)qL, Require: At each timet, agenth
N N N 1: gathersu,(t — 1), k € N(h), and measures, (), v, (t).
and thatF can be conveniently approximated by 2: if vp(t) > Upnax  OF  vp(t) < Unin then
3:
- (M
F = {qc : Vinin < \S(N )QG < ‘/maX7Qmin < qc < Qmax} 5h = G(UN - 'Uh(t)) (22)
4. end if
where 5: if Umin < 0p(t) < Umax then
Vinin = = (8% [M N] B’;‘z] — %(N)qL) + 1(Umin — Un), 6: computes
N
1 5f,h = Z (Mmin,é(t) - Mmax,é(t) (23)
Vimax = —— (% [M N] |:pG:| — S(N)QL) + 1(Umax — UN) LeN (h)
o n in(Lue(t) — Lun(t) 9))
tve(t)s - -
Therefore, problem (19) can be convexified obtaining F ynevn (ur(t) sin(Lue( h
R(M) R(N) R(Q) Oimas = (Umas = vn () (24)
Inin qg 3 qG + 2qg 3 CIL _|_ q{ 3 (IL (Zla) (SUmin,h = G(Umin - ’Uh(t)) (25)
9 Uy Uy Uy 4 set
. ~ and sets
subject toge; € F (21b) 7. if sign(ou,,.n) = sign(dyn) then
We refer to the above problem as tygproximated convexified  8: 0 =6y .h
(OPRF) problemand we denote by, its optimal solution. 9 else
The f-DORPF algorithm improves the performance of the 10: 0 = Upuh

algorithm presented in [15] (denoted hereafter as DORPF)11: end if
DORPF addresses problem (19) by a iterative dual ascei stral2: _
egy adopting auxiliary variables, i.e., thagrange multipliers 0 = sign(d¢,,) min{ds 4,0} (26)
for both the voltage and the reactive power constraints. .

Differently from LVC-1 and LVC-2, agents in DORPF can 13 €nd if .
communicate with their neighbors. Remarkably, it is shown4 computes the reactive power update
in [15] that, under (7), (20) and some additional mild as- -
sumptions, DORPF converges 4@, i.e, the optimal solution Gn = qn(t) + on (27)
of the approximated convexified OPRF problem. In otheris: computes the Lagrange multipliers update
words, thanks to the additional information received frdma t ~ o
neighbors, the agents not only drive the voltage magnittmies fninn (£ + 1) = {Mmm () 4+ (qrﬂ;n - L’;)] (28)
satisfy the operational constraints, but also minimizepghwer ’ ’ Uv Ux/lo
losses. However, in spite of this optimal steady-state gntyp Gn gmax \ |~
experimental results show how the transient of DORPF is much ~ #masn(t 1) = {“m‘”"h(t) + (U}’V i )] . (29)
slower than the one of the local algorithms.

In this Section, to improve the transient performance, wesis: injects the projected setpoints
introduce the f-DORPF algorithm, obtained by combining
DORPF with LVC-2. Numerical results reported in Section VII qn(t+1) = [c]h]g‘“?x (30)
show how f-DORPF inherits the fast transient of LVC-2 and m
the convergence to the optimal equilibrium of DORPF. The f-
DORPF algorithm is still an iterative dual-ascent like sgy Some explanations are in orderujf violates constraint (9),
where only the Lagrange multipliers associated to the ngact agenth updates its reactive power by using the LVC-2 rule,
power constraints are introduced. Eliminating the Lageang once set/; = Uy (see equation (22)).
multipliers related to voltages’ constraints speeds upmifig Instead, ifvy, € [Unin, Umax), then agenth discriminates
cantly the transient of the DORPF algorithm; in -DORPF, thebetween a step inspired by DORPF (see equation (23) and the
absence of the voltages’ multipliers is compensated byabe f algorithm presented in Section VI in [15]), and a step of LYC-
that agenth performs a step of LVC-2 whenevey, < Upin (see equations (24) and (25) obtained by setting, respdgtiv
or v, > Upnaz- Us = Unax and Uy = Unin). Observe that the terriy

An algorithmic description of f-DORPF is provided in Al- involves the knowledge of multipliers @&fand of its neighbors;
gorithm 1 where, for each ageht piminh andumax r denote the  therefore its computation requires the communication betw




on é¢ , has been proposed and fully analyzed in [17], where, ® 4
however, the goal was only the power loss minimization, ! :
without considering any voltage support to the grid. Notice } [
that the term$y;, . » anddy,,,, .» have, by definition, different N

max min

signs. Letd be the one with the same sign &f ;. The 7 I
h’'s reactive power increments;; and § would have the
same effect omi’s voltage magnitude: either an increment
(if both positive) or a decrement (if both negative). To keep
the constraints satisfied, f-DORPF chooses the less aggress
update between;; and  (see equation (26)): indeed, as
discussed in [17], the mere use of (23) could drive the veltag
magnitudes outside the ran{é&,,i,, Umax|, though moving the
system towards the minimum losses configuration. This is the

reason Why we can not S|mply rer O.n (2.3)’ but, instead, Wq:igure 4. Schematic representation of the IEEE 37 test fgé8grthe agents
propose an update based on the choice in (26). . are represented by gray nodes in the distribution network.
We conclude this subsection by highlighting another inter-

esting property of the f-DORPF. Agehtupdates the Lagrange
multipliers imin b, tmax,n (DY (28) and (29)) at each iteration
of the algorithm, also when the value &f does not depend on
Hmin,h OF limax 1. I.€., When the amount of reactive power to be
injected is computed according to a LVC-2 step. Nonetheless
the updated values Qfnin, and pmax,, are broadcasted to
agents inN'(h), that use them to perform computations in
(23); likely, some of the reactive power set points computed
by agents in\/ (k) will depend on these values @f,;, » and
Imax,k- This information flow is crucial to meet the operative
constraints; indeed it is thanks to this cooperation than&
are able to rise o decrease the voltage magnitude of those
agents, which are operating at their limits (in terms of tieac
power injection), but are violating the voltage constraint

neighboring agents. Of note, the update ruleypbased only r ._}

Figure 5. Schematic representation of the IEEE 123 test feld@, the
agents are represented by gray nodes in the distributiomoriet

A. On the equilibrium points of the f-DORPF

In the following Proposition we characterize the equiliioni
points of the f-DORPF algorithm by assuming that the grid is
radial, which is always the case of distribution networks.

Proposition 3: Consider the f-DORPF algorithm and as-
sume the grid radial. Leg, be the optimal solution of the

Figure 4 and 5, can regulate the reactive power injection to
control the voltage magnitude. The algorithms presented ha
been run on a nonlinear exact solver of the grid [19]. In &l th
simulations, the reactive power outputs of the micro-gatoes
approximated convexified OPRF problem. Then the following.h.ave been initialized to ZEr0, while the'.r generation caipab'
. ities have been chosen in such a configuration guaranteeing
two facts hold true: . -2 ; ° :
o ) A . that the constraints (9) are satisfied, always exists, e,
1) There exist(i,ax Hinin) SUCh thallqg;, 150 Hinin) 1S @N system is always feasible. The simulations have been @gtain

equilibrium for the -DORPF; and optimizing over the parameters, ¢ and .
2) If (§¢, fimax, fmin) 1S @n equilibrium for the f-DORPF,

thenge = ¢ ] .
The proof of the proposition is reported in Appendix A. A Static load analysis
Observe that the above Proposition ensures the existence ofln this subsection we compare the algorithms performance
equilibrium points for the f-DORPF and that the componentwhen the grid loads are time-invariant. In Figure 6 and 7 we
of the reactive power of these equilibria coincides wjth plot, for each strategy, the voltage magnitude profile of the
agent achieving the smallest value at the stee;dy state, i.e.
the agents which are circled in Figure 4 and*5Notice
VI_I' SIMULATIONS AI_\ID DISCUSSION ~ that, tgr]]ough the system is feasible, gLVC-l and LVC-2 fail to

The algorithms have been simulated on testbeds inspiregheet the voltage magnitude constraints in the IEEE37 case
from the IEEE 37 and the IEEE 123 (see [18]), depicted in(see Figure 6). Nonetheless, the general effect of LVC-1 and
Figure 4 and 5. Notice that both the assumptions on homotvC-2 is that of moving the voltage magnitude towards the
geneous micro-generators and homogeneous line impedandessible set; indeed, the distance of the steady-stategelt

do not hold, i.e. both (11) and (20) are not satisfied. Thusmagnitude fromi/, is smaller than the distance of the initial
the algorithms are tested in a realistic scenario. We censid

the scenario where several micro-generators, gray nodes in'For simplicity we consider only the constraing > Upin.
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Figure 6.  Minimum compensators voltage magnitude using therigétgns Figure 9. Daily behaviour of power generation and of load deina
presented in the IEEE37 test case.
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Figure 10. Voltage magnitude profile of the circled agent igufFé 4
Figure 7.  Minimum compensators voltage magnitude using theritthgns
presented in the IEEE123 test case.

B. Dynamic load analysis

voltage magnitude from/mn. In Figure 7 all the strategies In this subsection we the compare algorithms performance

lead the voltage magnitude Withil,in, Unmas]; in this case, When the loads are time varying. In Figure 9 we plot the
we highlight the fast transient of LVC-1. LVC-2 and how f- daily profiles, that we consider in our simulations, of bdie t

L : total load demand (purple line) and of the total active power
DORPF significantly improves the performance of DORPF. injected by the agents into the grid (blue line). Both preféee

In Figure 8 we report the behavior of the power losse . ; :
in the IEEE37 test case. Observe that f-DORPF attains t%ﬁ:mg“tﬁeedd\ggh the respect to the maximum value assumed

same steady-state value of the DORPF, exhibiting a faste Typically, the inverter of agenk has an instantaneous

transient. Instead, LVC-1 and L1VC-2, since they do not aim eneration capability which is limited by its fixed apparent

at minimizing the losses, lead the system to a less efficiery o i .
configuration power capabilityl smax,»|; N@amely, the phasor representing the

instantaneous power injected must lie inside a circle of ray
|smax,n| Ccentered at the origin. In our simulations, we assume

[
_ — LvC-1 o 1
E LvC-2 5 —— optimum
= DORPF = DORPF
0 —— f-DORPF g f-DORPF
7] £
o
- (]
(@]
g \./
3.04 | | | | \ | é Unnin | \ s
0 20 40 60 80 100 120 | | |
iteration 0 6 12 18 24

Figure 8. System losses using the DORPF and the f-DORPF. ddsed hours

minimum value of this particular realization, computed via atraized solver, ) ] ] ) o
is of 3.04 kW Figure 11. \oltage magnitude profile of the circled agent iguFé 5



[$max, k| = 1.1Pmax,n, Wherepmax » is the maximum amount APPENDIX

of active power that can be generated, as suggested in [7], The component wise reactive power update (14) can be
since inverters are available in discrete sizes and argy/ltke  expressed in vectorial form as

be slightly oversized with the respect p@,ax . It turns out aCS(M)

that the amount of reactive power that can be injected bytagen ¢c(t+1) = [(I t=go ~
h at timet is a function of|smax 5| and of the injected active N
power py,(t), i.e.,

Gmax
al)gc(t) + alV + ap

9miy

(31)
where

Qmax,h(t) = \/|5max7h|2 - ph(t)2 ‘7 = UN qr, + UN p
andgumin,a (t) = —gmax,x(t). In our setup we have verified that Notice that?” represents the contribution of the uncontrolled

F is nonempty for anyt, namely there is always a feasible powersp, p;, ., to the agents voltage magnitude, i.e.
solution. In our simulations, the control actions are perfed S(M)

every30 seconds. The results are reported in Figure 10 and 11, ve = ge + V.
where we plotted the daily behavior of the voltage magnitude U

of the circled agent in the IEEE37 and in the IEEE123| et us definer(t) = q¢(t) —qo(k — 1). By exploiting the fact
testbeds, respectively. The optimal solution computeduin  that given the vectors, w, a,b and , ||[v]% — [w]%|| < [jv —w|,

S,y 4 RN [pﬂ +10x.  (32)

a centralized solver. it can be easily shown that

The following observations are in order. Firstly, when ther aCS(M)
are no voltage constraints violations, the trajectoriescdied |zt + 1) < ‘ ([ + = - a[) lz ()| (33)
by DORPF and f-DORPF are basically the same; in other Un

words f-DORPF acts as DORPF, thus attaining power losseSrom equation (33), it trivially follows that if

minimization. Secondly, during the central hours of the,day 9

in the IEEE37 testbed an overvoltage occurs due to the a < — AN
= X i~ : ; 1 — Sp(S(MD)

massive increment of active power injected. Notice that, it Un

takes a while for DORPF to drive the voltage magnitude

below the limit value Uy, instead, f-DORPF is able 10 nower injected reaches the equilibriufa, associated with the
keep the constraints satisfied (i.e., the overvoltage igddad) oltages (s, . . ., im).

and generates a trajectory which is very close to the opt!ma\f The component wise reactive power update (17) can be

one. Thirdly, during evening hours, the injection of active expressed in vectorial form as

power significantly decreases causing an undervoltageinAga S(M Gmax

f-DORPF exhibits a superior performance with the respect to g¢c(t+1) = [(I - M) qc(t) + € (ud - \7)} . (34)

DORPF; no undervoltage appears in the trajectory depicgfed b Un Gmin

f-DORPF, while it is not avoided when DORPF is adopted. \yhereV is the same defined in equation (32). Similarly to
The better performance of f-DORPF in tracking the optimalwhat done before, let us defingt) = q¢(t) — qo(k — 1).

solution in the more realistic scenario of time-varyingdsa Then

is related to its faster transient property we highlightedhie

then ||z(¢)|| — 0 and thengs(t) — gg, i.e. the reactive

previous numerical example and in Section VI. e+ D) <||{I—- i x(t)
N
(M
VIIl. CONCLUSIONS < HI— E\Y(E )H (2]l (35)
N

In this paper we propose and analyze, theoretically ang ig yhys straightforward to see that if condition (18) held
through simulations, three voltage control strategie® IVIC- 1,4y, " then ¢4 (1) — gc, i.e. the reactive power in-

1 and the LVC-2 algorithms are purely local: the agents regu; reaches th ilibriud i with the vol
late their reactive power output based only on the knowledge Je_cted eaches the equilibriuw;, associated with the voltages

the magnitude of their own voltage. Since they do not require Eéhs’iggr)'problem (21). Observe that it can be solved
any communication infrastructure, they can be easily implethrough the standardiual ascentstrategy, whose iterative
mented but it is not guaranteed that the voltage constraintgpdating equations are the following:

are met. Instead, the f-DORPF algorithms is distributed: th . _

reactive power setpoints are computed by the agents exgjoit 96 (t + 1) =6 (8) + 90 (g6 (), Amin(t), Amax(?),

both local measurements and information coming from the pmax(t), pimin(t)) -
neighbors. This cooperation is exploited to not only sgtisf Amini (£ + 1) =[>\mm,h(t) + iz (Unin _'Uh(t)2)}
the voltage requirements, but also to achieve the poweesoss Ux 0
optimality. The f-DORPF has been designed by combining Amaxn(t 4+ 1) :[)\maxh(t)‘F 2 (on(t)? — Unﬁax)]‘x
DORPF (a distributed algorithm presented in [15] solving Ux 0
the optimization problem (21)) and LVC-2. Specifically, f- fimin.n (£ 1) :[Nmin,h(t)"f‘ %(Qmin—(jh)]oo
DORPF inherits the fast transient of LVC-2 and the steady 2Ux 0
state optimality property of DORPF. Simulations, illusimg 1) = (6 — =~
the effectiveness of f-DORPF, are provided. pmasp {6+ 1) [Mmax'h(t) " 2U% (@ qmax)]o



The expression 0% p(ga, Amin, Amax fmax #min) has been

derived in [15], and is given by as

dp (QG7 Amins Amax, omaxs Mmin) =
—qa — M7 Nqg, + sin 0 Amin —
+ M_l(//émin - //['ma,x)

)\max)
(36)

Since problem (21) is convex, standard optimization result ypcarve that bothi
entries and that

(see [20]) show that, for suitable values-pfthe dual ascent
strategy converges 1@y, Afin» Amax Himins Mmax): D€INGGE the
optimizer of problem (21). Lef; be the vector collecting all
the (6¢)x’s (defined in equation (23)); € C. The vectord;
can be expressed (see [15]) as

) e [
+ M_ (Mmin - //Lmax)- (37) [2]
Exploiting the linear model (8), it can be shown that equatio
(37) can be rewritten as
[3]
6f (qu Amins Amax, Hmaxs ,Umin) = —qG — MﬁlNQL
+ M_l(,umin - ,U/max)~ (38) [4]

Let the equilibrium of the dual ascent strategy be
(G&s Msins Amaxe Kmins Hmax)- It satisfies the condition 5]

S (46> Amins Amaxs Hmins Hmax) = 0-

We will show that (¢, tmin, max) 1S @n equilibrium for
the f-DORPF. Leth denote an agent whose multipliers
* * are equal to zero. In this case, by comparing

min,h’ max,h

(36) ‘and (38), it follows that [7]

(6]

6f (QZ" u’:;lin? /’L;knax)

* * * * * [8]
=0p (qG7 Amins Amase Hmins Mmax)
=0.
[9]
As a consequence, we have, from (26), that= 0 for all
heC.
Now, leth denote an agent such that eitdgy, , or A* . [10]
is greater than zero. This implies thag is equal to either
Umin OF Umax. Consider the case wherk; , > 0 and 1]
v, = Unin (the case Where\fnaxﬁ > 0 and vy, = Upax 1S
analogous). Beingy, = Uy, from (24) and (25) it turns out
thatdy,,..., > 0 anddy,,, » = 0. Furthermore, [12]
6f7h(q*7 P’:nina /J‘;knax)
S 6D7h(q*a :u‘;knitn .u;kna:u ;knina A:;nax) =0. [13]
From (26), it follows thatd, = 0. Thus (g%, ik, i) 1S 14
an equilibrium for the f-DORPF.
On the converse, l€ljc, fimin, fimax) b€ an equilibrium of [15]

the f-DORPF algorithm. Firstly, notice thgt; belongs toF.

In fact, if go ¢ F, then there would be at least an aggrsuch

that eithel”Uh < Umin and% = @max, O vp > Umax anth, =

¢min. Consider the former case (the latter is analogous). Frorf®!
(??) and (29), it follows thafim.x , keeps increasing, and thus

(4G, fimin, fimax) 1S NOt an equilibrium. Hencés € F. Now,

let us introduce the auxiliary variablés,;, andAyax, defined

~ 0 if 5fh >0
>\min7 h = f T

{ —E i 67 <0
[0 ifbs0
max,h = gij;’}(; if éf,h >0

min and Apa.x have only non-negative

5D (QGv 5\min7 5\maX7 ,amin; ,LNLmax) =0.

Thus, since the minimizer is uniqués = ¢¢.
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