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Local and distributed voltage control algorithms in distribu tion
network

Guido Cavraro, Ruggero Carli

Abstract—In this paper we consider a voltage control problem
in power distribution grids. The specific goal is that of keeping
the voltages within pre-assigned operating limits by commanding
the reactive power output of the micro-generators connectedto
the grid. We propose three strategies. The first two strategies
are purely local, meaning that each micro-generator updates
the amount of reactive power to be injected based only on
local measurements of the voltages’ magnitude. Instead the third
one is distributed, namely, the micro-generators, to perform
the updating steps, require some additional information coming
from the neighboring agents. The local strategies are simpler
to be implemented but they might fail in solving the voltage
control problem. Instead, the distributed one requires the micro-
generators to be endowed with communication capabilities but it
is effective in driving the voltages within the admissible intervals
and, additionally, it exploits the cooperation among the agents
to reach also a power losses minimization objective. Theoretical
analysis and extensive numerical simulations are provided to
confirm the arguments aforementioned.

I. I NTRODUCTION

Recent technological advances, together with environmental
and economic challenges, have been motivating the massive
deployment of small power generators in the low voltage
and medium voltage power distribution grid [1]. On one
hand, significant benefits to the network operation could come
from the availability of a large number of these generators
in the distribution grid. They could to provide a number of
ancillary services, e.g., voltage profile improvements, reduction
of line losses, reduction of power generation cost, just to
mention a few [2], that are of great interest for the grid
management. On the other hand, the uncontrolled injection
of power from several renewable energy sources can cause
serious system damages or system instabilities. For instance,
operational bounds may be violated due to the intermittence
of the renewable sources, as large voltages variations might
occur. For these reasons, voltage regulation is a fundamental
issue in the development of the futuresmart distribution grid.

In the past, electro-mechanical control devices, such as shunt
capacitor banks or on-load tap changers [3], have been used
to perform voltage control in distribution networks. However,
they are typically too slow to properly respond to the voltage
fluctuations due to the high variability of the load demand
and of the energy resources, while inverters can act on a fast
timescale in the grid. This has motivated the recent increasing
interest for strategies that regulate the voltage magnitudes by
directly actuating the injection (or absorption) of the micro-
generators reactive power; indeed, when running below their
rated output current, many inverters have the capability of
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injecting (or of absorbing) reactive power together with active
power [4].

The highly fluctuating behaviors of the renewable energy
sources, call forpurely local or distributed approaches to
deal with the voltage regulation problem.Purely local means
that agents use just local measurements and do not exchange
information with each other;distributedmeans that agents, that
are physically close, are allowed to communicate and can share
information to cooperatively reach the pre-assigned objectives.

The purely local strategies (see [5], [6], [7], [8], [9], [10],
[11]) typically aim to guarantee that voltage constraints are
satisfied. Distributed strategies (see [12], [13], [14], [15]),
beside local voltage constraints, take into account other im-
portant global objectives, e.g., power losses minimization,
and drive the state system towards configurations which are
obtained solving the so-calledoptimal reactive power flow
(ORPF) problems. Strategies in [12], [13], [14] reformulate
ORPF problems as a rank-constrained semidefinite programs,
convexify them by eliminating the rank constraint and provide
solutions in a distributed manner through standard optimization
algorithms. However, these approaches require the monitoring
of all the buses of the grid, which, in general, is not amenable
of practical implementation in the distribution grid. Thisissue
is overcome in [15] where not all the buses are required to
be monitored. The algorithm proposed in [15] is based on the
alternating actuation of the two following steps: gathering volt-
age measurements at the micro-generators buses and applying
control laws based on these measured data.

Three voltage control strategies are proposed in this paper.
The first two strategies (denoted as LVC-1 and LVC-2) are
purely local. They are based on the classical droop controlled
described in [4]. They exhibit a fast transient properties and are
shown to converge to a steady state which, however, in general,
is not guaranteed to meet the voltage constraints. At this
regard, we provide a numerical example where for both LVC-1
and LVC-2, the micro-generators are not effective in regulating
the voltage between the desired limits, even if the available
reactive power resources would allow it, if properly dispatched.
This issue is overcome by the third strategy (denoted as f-
DORPF) which is a novel distributed algorithm improving the
performance of the distributed strategy introduced in [15](de-
noted as DORPF). Remarkably, in [15], it is shown that adding
information exchanges between neighboring nodes allows the
DORPF algorithm to solve the voltage control problem while
also reaching a power losses minimization objective. However
DORPF exhibits poor transient performance, namely, it re-
quires a consistent number of iterations to approach the optimal
solution. The main idea behind the f-DORPF algorithm we
propose in this paper is that of combining the updating steps
of DORPF with those of the purely local strategy LVC-2, thus
obtaining fast transient properties and convergence to thesame
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steady-state of the DORPF, i.e, the operating conditions are
satisfied and the power losses are minimized.

The paper is organized as follows. A model of the distri-
bution network is provided in Section III. In Section IV, we
introduce the problem of regulating the voltages magnitudes
through the reactive power injected by the micro-generators. In
Section V and in Section VI, we illustrate, respectively, the two
purely local strategies and the distributed strategy. Finally, we
analyze and compare the performance of the various strategies
in Section VII.

II. N OTATION AND MATHEMATICAL PRELIMINARIES

Let us denote byG = (V, E) a undirected graph, where
V and E denote, respectively, the set of nodes and the set
of edges. Assume thatn = |V| and r = |E|. Given two
nodesh, k ∈ V, we define the pathPhk = (v1, . . . , vℓ) as
the sequence of nodes, without repetitions, such thatv1 = h,
vℓ = k and for eachi = 1, . . . , ℓ − 1, the nodesvi
and vi+1 are connected by an edge. Given a vectoru, ū
denotes its complex conjugate, whileuT denotes its transpose.
Instead,ℜ(u) and ℑ(u) refer to its real and imaginary part
(element-wise), respectively. Let the symbol1 denote the
column vector whose elements are all equal to one, while
the symbolev denote the column vector whose elements are
all equal to 0, except itsv-th entry which is equal to1.
Given w,w,w ∈ R

ℓ, with wh ≤ wh, h = 1, . . . , ℓ, let the
operator[w]ww be the component-wise projection ofu in the
set

{

x ∈ R
ℓ : wh ≤ xh ≤ wh, h = 1, . . . , ℓ

}

, that is,

(

[w]ww

)

h
=

{

wh if wh ≤ wh ≤ wh

wh if wh < wh

wh if wh > wh

(1)

Given a real numberx we define the function sign(x) as

sign(x) =

{

x/|x| if x 6= 0
0 if x = 0

(2)

Given a matrixΛ, we denote withρ(Λ) its spectral radius,
namely, the largest eigenvalue in absolute value.

III. SMART GRID CYBER-PHYSICAL MODEL

In this paper, we describe thesmart power distribution
network as a cyber-physical system, where thephysical layer
is composed by the power distribution infrastructure including
the electric lines, micro-generators, loads and the point of
connection to the transmission grid (denoted as PCC), while
the cyber layer consists of the intelligent agents which are
deployed in the electric grid.

A convenient way to model the physical layer is by a
directed graphG, where edges inE represent the electric
lines, and nodes inV represent both loads and generators
connected to the microgrid (see Figure 1). The following
variables describe the overall state of the system:
• u ∈ C

n, whereuh is the voltage at nodeh;
• v ∈ R

n
≥0, wherevh is the voltage magnitude at nodeh;

• i ∈ C
n, whereih is the current that nodeh injects;

• s = p+ jq ∈ C
n, wheresh, ph andqh are the complex,

the active and the reactive power injected at nodeh.

uh

ih

ξe

ye

Figure 1. Circuital representation of a microgrid, where black diamonds are
micro-generators, white diamonds are loads, and the left-mostelement of the
circuit represents the PCC.

We model the PCC as an ideal sinusoidal voltage generator
(slack bus) at the grid nominal voltageUN . Without loss of
generality, we label the PCC as node1 and we assume its
voltage phase to be equal to0. The powerssh corresponding
to grid loads are such thatph < 0, which means that active
power is supplied to the devices, while, when dealing with
power micro-generators, we have thatph ≥ 0, which means
that active power isinjected into the grid. The system state
satisfies the following relations

i = Y u, u1 = UN , (3)
uhīh = ph + jqh h 6= PCC, (4)

whereY is the bus admittance matrix of the grid. The element
Yhk represents the admittance of the line connecting bush with
busk. The Green matrixX ∈ R

n×n, which depends only on
the topology of the grid power lines and on their impedances,
is the unique symmetric positive semidefinite matrix, see [15],
such that

u = Xi+ 1UN . (5)

In our setup, each micro-generator corresponds to anagent
in the cyber layer and belongs to the setC ⊆ V (with
|C| = m). We assume that the agents are provided withsensing
capabilities, in particular voltage phasor measurement units
(PMU) (devices that measure both magnitude and phase of
the voltages) and withcomputational capabilitiesthat will
be exploited in the proposed algorithms implementation. In
particular, the agents can regulate the amount of reactive
power injected into the grid. To underline the difference among
smart agents and passive loads, we adopt the following block
decomposition of the voltage vectoru

u =
[

u1 uT
G uT

L

]

, (6)

whereu1 is the voltage at the PCC,uG ∈ C
m are the voltages

at the micro-generators, anduL ∈ C
n−m−1 are the voltages

at the loads. Similarly,sG = pG + jqG and sL = pL + jqL.
Following the same partitioning, we can block-partitionX as

X =

[

0 0 0
0 M N
0 NT Q

]

,

whereM ∈ C
m×m, N ∈ C

m×n−m−1, Q ∈ C
n−m−1×n−m−1.

The non-linear relation betweenu ands, can be conveniently
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linearized as in [15], by
[

uG

uL

]

=
1

UN

[

M N
NT Q

] [

s̄G
s̄L

]

+ 1UN . (7)

Interestingly, equation (7) can be used to approximate the
voltages magnitudes as

[

vG
vL

]

=
1

UN

ℜ

[

M N

NT Q

] [

pG
pL

]

+
1

UN

ℑ

[

M N

NT Q

] [

qG
qL

]

+ 1UN .

(8)
Equation (8) represents a more general version of the widely

usedlinearized DistFlow model(e.g. in [8], [9], [11]), which
holds also in the case of no radial grids. Equations (7) and (8)
will be used in the following to model the grid voltages and
their magnitude, respectively.

IV. V OLTAGE CONTROL STRATEGIES BASED ON REACTIVE
POWER REGULATION

Classically, the generators regulate the amount of reactive
power they inject into the electrical grid, in order to perform
the voltage control, i.e., to maintain the voltage magnitudes
of the buses within a predefined deviation from the nominal
voltageUN . Since we assume that only agents can take voltage
measurements, we aim at meeting the following constraints

Umin ≤ vh ≤ Umax, ∀ h ∈ C. (9)

where Umin and Umax denote, respectively, the minimum
and maximum admissible values for the voltages magnitude.
Usually, Umin = (1 − ξ)UN andUmax = (1 + ξ)UN , where
0 < ξ < 1.

In addition, since typically the generators dispersed in the
distribution network are of small size, we take into accountalso
constraints on the generation capability of agenth. Specifically,
we assume

qmin,h ≤ qh ≤ qmax,h, ∀ h ∈ C, (10)

whereqmin,h, qmax,h are, respectively, the minimum and the
maximum amount of reactive power that agenth can inject.
Typically qmin,h < 0, qmax,h > 0 and qmin,h = −qmax,h. For
the sake of simplicity and in order to keep the notation lighter,
in the following, we will assume that the micro-generators are
homogeneous, namely, for allh ∈ C,

qmin,h = qmin, qmax,h = qmax, (11)

for given qmin, qmax. Based on the constraints in (9) and
in (10), we introduce a proper definition of the set of the
feasible reactive power injections. Observe that, in the setup
we described, the quantitiespG, pL andqL are assumed to be
constant and that onlyqG is actuated in order to regulatevG.
Hence, for a given triple(pG, pL, qL), we define

F (pG, pL, qL) = {qG such that for allh ∈ C it holds
qmin ≤ qh ≤ qmax, Umin ≤ vh ≤ Umax} .

Since there is no risk of confusion, for the sake of notational
convenience, we omit the dependence ofF on (pG, pL, qL).

In next sections we introduce three strategies, where each
agent updates the amount of reactive power to be injected in

h

k ∈ N (h)

k′ /∈ N (h)

Figure 2. An example of neighboring cyber layer agents. Circled nodes (both
black and gray) represent agents (nodes belonging toC). The black circled
nodes belong to the set of neighbors ofh. The gray circled node is an agent
that do not belong to the setN (h) ⊂ C. For each agentk ∈ N (h), there
exists a path that connectsh to k which does not include any other agent.

order to maintain the voltages magnitudes within the interval
[Umin, Umax]. The first two strategies arepurely local, i.e.,

1) agenth updatesqh based only on measurements of the
magnitude of its own voltage, that is,vh;

2) there is no exchange of information between the agents.
In the third strategy, instead, agents can communicate with
each other; the exchange of information regards the taken
measurements and some additional quantities, as we will
describe in Section VI. To properly model the admissible
communications in the cyber layer, we next define the set of
neighbors of a given agenth.

Definition 1: Let h ∈ C be an agent. The set of neighbors
of h, denoted asN (h), is the subset ofC defined as

N (h) = {k ∈ C ∪ {1} | ∃ Phk,Phk ∩ C = {h, k}} .

In Figure 2 we report an example of the neighbors set. In our
setup we assume that every agenth ∈ C knows its neighbors,
i.e., N (h), and that it can communicate with them.

V. PURELY LOCAL VOLTAGE CONTROL STRATEGIES

In this section we propose two control strategies where each
agenth updatesqh exploiting only measurements of its own
voltage magnitude, i.e.,vh.

A. A first local voltage control strategy (denoted as LVC-1)

LVC-1 is a modified version of the reactive power com-
pensation technique introduced in [4]. To formally describe
LVC-1, let f(v) be defined as

f(v) = ζv + β (12)

where

ζ = −
qmax − qmin

Umax − Umin
, β =

qmaxUmax − qminUmin

Umax − Umin

In addition, letf̂(v) be the saturated version off(v) outside
the interval[qmin, qmax], that is,

f̂(v) = [f(v)]
qmax

qmin
. (13)
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Umin UN Umax

qmin

qmax

Figure 3. Pictorial representation off (red solid line) andf̂ (blue dashed
line), in the particular case whereqmax = qmin andUmin = (1 − ξ)UN ,
Umax = (1 + ξ)UN .

In Figure 3, we provide a pictorial representation off and f̂ .
After having taken the measurementvh(t), qh(t) is updated
by theh-th agent in the following way

qh(t+ 1) = [qh(t) + α ( f (vh(t))− qh(t))]
qmax

qmin
(14)

whereα is a positive constant. Observe that the equilibrium
points for Equation (14) are described bŷf(v); in fact, if
qh(t) = f̂(vh(t)) then qh(t + 1) = qh(t). Moreover, if
qmin = −qmax, Umin = (1 − ξ)UN andUmax = (1 + ξ)UN ,
then

ζ = −
qmax

ξUN

, β =
qmax

ξ
,

and it holds true that̂f(UN ) = 0. The following Proposition
characterizes the convergence properties of (14).

Proposition 1: Consider algorithm (14) Then, if

α ≤
2

1− ζρ(ℑ(M))
UN

, (15)

there exists am-upla (v̄1, . . . , v̄m) such thatvh(t) → v̄h and
qh(t) → f̂ (v̄h) for all h ∈ {1, . . . ,m}.
Although LVC-1 is based on the quite popular voltage control
strategy introduced in [4], in general, it does not guarantee
that v̄h lies within the interval[Umin, Umax]. If α satisfies
condition (15), then eachvh converges to a steady-statev̄h that,
in general, might violate the constraints (9). In Section VII,
we will provide a numerical example where, for someh,
v̄h /∈ [Umin, Umax].

Remark 1:As previously said, LVC-1 is based on the
strategy proposed in [4], which complies also the IEEE 1547.8
standard [16]. In [4]qh is updated as follows

qh(t+ 1) = f̂(vh(t)), (16)

i.e., qh is set directly equal to the value dictated by the
function f̂ . However, as remarked also by the authors of [4],
the practical execution of (16) could lead to oscillatory and
unstable behaviors which are avoided by theintegral rule (14).

Remark 2:Other purely local strategies have been proposed
in the literature. The algorithm in [8] is provably shown to
drive the voltages into the operating intervals defined in (9);
however the analysis in [8] is carried on only in the limited
scenario where all the agents are assumed to be compensators
and where no limits on the reactive powers are taken into
account. Instead, the algorithms proposed in [10], [11] assume

the constraints in (10) to hold for all the compensators; these
algorithms, similarly to LVC-1 are theoretically proved to
converge to a steady-state which, however, is not guaranteed
to satisfy the voltages’ constraints.

B. A second local voltage control strategy (denoted as LVC-2)

LVC-2 aims at driving all the compensators’ voltage mag-
nitudes to a desired valueUd. Again it is based only on
local measurements, but differently from LVC-1, it does not
resort to a droop-like function as the one introduced in (13).
Specifically, agenth updates the amount of reactive power to
be injected as

qh(t+ 1) = [qh(t) + ǫ (Ud − vh(t))]
qmax

qmin
(17)

whereǫ is a positive constant. Loosely speaking, the rationale
behind LVC-2 is as follows: ifvh < Ud then agenth will
inject reactive power in order to increasevh, while if vh > Ud

then agenth will absorb reactive power in order to decrease
vh. The convergence properties of LVC-2 are next stated.

Proposition 2: Consider algorithm (17). Then, if

ǫ ≤
2UN

ρ(ℑ(M))
(18)

there exist am-upla (v̄1, . . . , v̄m) such thatvh(t) → v̄h for all
h ∈ {1, . . . ,m}.
The proof of Proposition 2 is reported in Appendix A. Ob-
serve that the above Proposition establishes that, ifǫ satis-
fies condition (18), then the voltages magnitudes converge
to steady state values(v̄1, . . . , v̄m). However, in general, it
is not guaranteed that̄uh = Ud for all h ∈ {1, . . . ,m},
and that v̄h ∈ [Umin, Umax] even if Ud ∈ [Umin, Umax].
In Section VII we will provide a numerical example where,
thoughUd ∈ [Umin, Umax], there exists at least one agenth
such that̄vh /∈ [Umin, Umax].

VI. A FAST DISTRIBUTED OPTIMAL REACTIVE POWER
FLOW ALGORITHM (DENOTED AS F-DORPF)

In this section, we propose a noveldistributedcontrol algo-
rithm where each agenth, beside local voltage measurements,
requires additional information coming from the neighboring
nodes inN (h) to update the amount of reactive power it
injects. In addition to a voltage regulation objective, the
strategy exploits the cooperation among the agents to minimize
the power losses on the electric lines; specifically, it aims
at solving the followingoptimal reactive power flow(OPRF)
problem

min
qG

ℜ(ūTY u) (19a)

subject toqG ∈ F (19b)

whereℜ(ūTY u) are the line active power losses. Indeed, in
[15] it is shown how, by exploiting (7), the line power losses
can be expressed by (19a). The algorithm is derived in the
simplified scenario where all the grid power lines are assumed
to have the same resistance/inductance ratio, i.e., there exists
θ, such that

ze = eiθ|ze|. (20)
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for all e ∈ E . Equation (20) is satisfied when the grid is
relatively homogeneous, and is reasonable in most practical
cases. However, in Section VII, we simulate the algorithm in
the more realistic scenario where (20) does not hold. It can be
shown (see [15] for the detais) that, under approximation (7)
and under (20), the cost function (19a) is a quadratic function
on qG andF is a convex set onqG. Indeed, we have that

ℜ(ūTY u) ≃ qTG
ℜ(M)

U2
N

qG + 2qTG
ℜ(N)

U2
N

qL + qTL
ℜ(Q)

U2
N

qL,

and thatF can be conveniently approximated by

F̃ =

{

qG : Vmin ≤
ℑ(M)

UN

qG ≤ Vmax, qmin ≤ qG ≤ qmax

}

where

Vmin = −
1

UN

(

ℜ [M N ]

[

pG
pL

]

−ℑ(N)qL
)

+ 1(Umin − UN ),

Vmax = −
1

UN

(

ℜ [M N ]

[

pG
pL

]

−ℑ(N)qL
)

+ 1(Umax − UN ).

Therefore, problem (19) can be convexified obtaining

min
qG

qTG
ℜ(M)

U2
N

qG + 2qTG
ℜ(N)

U2
N

qL + qTL
ℜ(Q)

U2
N

qL (21a)

subject toqG ∈ F̃ (21b)

We refer to the above problem as theapproximated convexified
(OPRF) problemand we denote byq∗G its optimal solution.

The f-DORPF algorithm improves the performance of the
algorithm presented in [15] (denoted hereafter as DORPF).
DORPF addresses problem (19) by a iterative dual ascent strat-
egy adopting auxiliary variables, i.e., theLagrange multipliers,
for both the voltage and the reactive power constraints.

Differently from LVC-1 and LVC-2, agents in DORPF can
communicate with their neighbors. Remarkably, it is shown
in [15] that, under (7), (20) and some additional mild as-
sumptions, DORPF converges toq∗G, i.e, the optimal solution
of the approximated convexified OPRF problem. In other
words, thanks to the additional information received from the
neighbors, the agents not only drive the voltage magnitudesto
satisfy the operational constraints, but also minimize thepower
losses. However, in spite of this optimal steady-state property,
experimental results show how the transient of DORPF is much
slower than the one of the local algorithms.

In this Section, to improve the transient performance, we
introduce the f-DORPF algorithm, obtained by combining
DORPF with LVC-2. Numerical results reported in Section VII
show how f-DORPF inherits the fast transient of LVC-2 and
the convergence to the optimal equilibrium of DORPF. The f-
DORPF algorithm is still an iterative dual-ascent like strategy
where only the Lagrange multipliers associated to the reactive
power constraints are introduced. Eliminating the Lagrange
multipliers related to voltages’ constraints speeds up signifi-
cantly the transient of the DORPF algorithm; in f-DORPF, the
absence of the voltages’ multipliers is compensated by the fact
that agenth performs a step of LVC-2 whenevervh < Umin

or vh > Umax.
An algorithmic description of f-DORPF is provided in Al-

gorithm 1 where, for each agenth, µmin,h andµmax,h denote the

Lagrange multipliers associated with the constraintsqh ≥ qmin

and qh ≤ qmax, respectively. Moreover, the symbolyhℓ
denotes the admittance of the electrical path between agents
h and ℓ which is assumed to be known by both agenth and
agentℓ. Also the positive parametersǫ andγ are assumed to
be a-priori assigned (in particular,ǫ satisfying (18)).

Algorithm 1 f-DORPF
Require: At each timet, agenth

1: gathersµk(t− 1), k ∈ N (h), and measuresuh(t), vh(t).
2: if vh(t) ≥ Umax or vh(t) ≤ Umin then
3:

δh = ǫ(UN − vh(t)) (22)

4: end if
5: if Umin < vh(t) < Umax then
6: computes

δf,h =
∑

ℓ∈N (h)

(

µmin,ℓ(t)− µmax,ℓ(t) (23)

+ yhℓvh(t)vk(t) sin(∠uℓ(t)− ∠uh(t)− θ)
)

δUmax,h = ǫ(Umax − vh(t)) (24)
δUmin,h = ǫ(Umin − vh(t)) (25)

and sets
7: if sign(δUmin,h) = sign(δf,h) then
8: δ̃ = δUmin,h

9: else
10: δ̃ = δUmax,h

11: end if
12:

δh = sign(δf,h)min{δf,h, δ̃} (26)

13: end if
14: computes the reactive power update

q̃h = qh(t) + δh (27)

15: computes the Lagrange multipliers update

µmin,h(t+ 1) =

[

µmin,h(t) + γ

(

qmin

U2
N

−
q̃h

U2
N

)]∞

0

(28)

µmax,h(t+ 1) =

[

µmax,h(t) + γ

(

q̃h

U2
N

−
qmax

U2
N

)]∞

0

(29)

16: injects the projected setpoints

qh(t+ 1) = [q̃h]
qmax

qmin
(30)

Some explanations are in order. Ifvh violates constraint (9),
agenth updates its reactive power by using the LVC-2 rule,
once setUd = UN (see equation (22)).

Instead, ifvh ∈ [Umin, Umax], then agenth discriminates
between a step inspired by DORPF (see equation (23) and the
algorithm presented in Section VI in [15]), and a step of LVC-2
(see equations (24) and (25) obtained by setting, respectively,
Ud = Umax and Ud = Umin). Observe that the termδf,h
involves the knowledge of multipliers ofh and of its neighbors;
therefore its computation requires the communication between
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neighboring agents. Of note, the update rule ofqh based only
on δf,h has been proposed and fully analyzed in [17], where,
however, the goal was only the power loss minimization,
without considering any voltage support to the grid. Notice
that the termsδUmax,h andδUmin,h have, by definition, different
signs. Let δ̃ be the one with the same sign ofδf,h. The
h’s reactive power incrementsδf,h and δ̃ would have the
same effect onh’s voltage magnitude: either an increment
(if both positive) or a decrement (if both negative). To keep
the constraints satisfied, f-DORPF chooses the less aggressive
update betweenδf,h and δ̃ (see equation (26)): indeed, as
discussed in [17], the mere use of (23) could drive the voltage
magnitudes outside the range[Umin, Umax], though moving the
system towards the minimum losses configuration. This is the
reason why we can not simply rely on (23), but, instead, we
propose an update based on the choice in (26).

We conclude this subsection by highlighting another inter-
esting property of the f-DORPF. Agenth updates the Lagrange
multipliersµmin,h, µmax,h (by (28) and (29)) at each iteration
of the algorithm, also when the value ofδh does not depend on
µmin,h or µmax,h, i.e., when the amount of reactive power to be
injected is computed according to a LVC-2 step. Nonetheless,
the updated values ofµmin,h and µmax,h are broadcasted to
agents inN (h), that use them to perform computations in
(23); likely, some of the reactive power set points computed
by agents inN (h) will depend on these values ofµmin,h and
µmax,h. This information flow is crucial to meet the operative
constraints; indeed it is thanks to this cooperation that agents
are able to rise o decrease the voltage magnitude of those
agents, which are operating at their limits (in terms of reactive
power injection), but are violating the voltage constraints.

A. On the equilibrium points of the f-DORPF

In the following Proposition we characterize the equilibrium
points of the f-DORPF algorithm by assuming that the grid is
radial, which is always the case of distribution networks.

Proposition 3: Consider the f-DORPF algorithm and as-
sume the grid radial. Letq∗G be the optimal solution of the
approximated convexified OPRF problem. Then the following
two facts hold true:

1) There exist(µ∗
max, µ

∗
min) such that(q∗G, µ

∗
max, µ

∗
min) is an

equilibrium for the f-DORPF; and
2) If (q̃G, µ̃max, µ̃min) is an equilibrium for the f-DORPF,

then q̃G = q∗G.
The proof of the proposition is reported in Appendix A.
Observe that the above Proposition ensures the existence of
equilibrium points for the f-DORPF and that the component
of the reactive power of these equilibria coincides withq∗G.

VII. S IMULATIONS AND DISCUSSION

The algorithms have been simulated on testbeds inspired
from the IEEE 37 and the IEEE 123 (see [18]), depicted in
Figure 4 and 5. Notice that both the assumptions on homo-
geneous micro-generators and homogeneous line impedances
do not hold, i.e. both (11) and (20) are not satisfied. Thus,
the algorithms are tested in a realistic scenario. We consider
the scenario where several micro-generators, gray nodes in

Figure 4. Schematic representation of the IEEE 37 test feeder[18], the agents
are represented by gray nodes in the distribution network.

Figure 5. Schematic representation of the IEEE 123 test feeder [18], the
agents are represented by gray nodes in the distribution network.

Figure 4 and 5, can regulate the reactive power injection to
control the voltage magnitude. The algorithms presented have
been run on a nonlinear exact solver of the grid [19]. In all the
simulations, the reactive power outputs of the micro-generators
have been initialized to zero, while their generation capabil-
ities have been chosen in such a configuration guaranteeing
that the constraints (9) are satisfied, always exists, i.e.,the
system is always feasible. The simulations have been obtained
optimizing over the parametersα, ǫ andγ.

A. Static load analysis

In this subsection we compare the algorithms performance
when the grid loads are time-invariant. In Figure 6 and 7 we
plot, for each strategy, the voltage magnitude profile of the
agent achieving the smallest value at the steady state, i.e.,
the agents which are circled in Figure 4 and 51. Notice
that, though the system is feasible, LVC-1 and LVC-2 fail to
meet the voltage magnitude constraints in the IEEE37 case
(see Figure 6). Nonetheless, the general effect of LVC-1 and
LVC-2 is that of moving the voltage magnitude towards the
feasible set; indeed, the distance of the steady-state voltage
magnitude fromUmin is smaller than the distance of the initial

1For simplicity we consider only the constraintvh ≥ Umin.
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Figure 6. Minimum compensators voltage magnitude using the algorithms
presented in the IEEE37 test case.
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Figure 7. Minimum compensators voltage magnitude using the algorithms
presented in the IEEE123 test case.

voltage magnitude fromUmin. In Figure 7 all the strategies
lead the voltage magnitude within[Umin, Umax]; in this case,
we highlight the fast transient of LVC-1, LVC-2 and how f-
DORPF significantly improves the performance of DORPF.

In Figure 8 we report the behavior of the power losses
in the IEEE37 test case. Observe that f-DORPF attains the
same steady-state value of the DORPF, exhibiting a faster
transient. Instead, LVC-1 and LVC-2, since they do not aim
at minimizing the losses, lead the system to a less efficient
configuration.
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Figure 8. System losses using the DORPF and the f-DORPF. The losses
minimum value of this particular realization, computed via a centralized solver,
is of 3.04 kW
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Figure 9. Daily behaviour of power generation and of load demand
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Figure 10. Voltage magnitude profile of the circled agent in Figure 4

B. Dynamic load analysis

In this subsection we the compare algorithms performance
when the loads are time varying. In Figure 9 we plot the
daily profiles, that we consider in our simulations, of both the
total load demand (purple line) and of the total active power
injected by the agents into the grid (blue line). Both profiles are
normalized with the respect to the maximum value assumed
during the day.

Typically, the inverter of agenth has an instantaneous
generation capability which is limited by its fixed apparent
power capability|smax,h|; namely, the phasor representing the
instantaneous power injected must lie inside a circle of ray
|smax,h| centered at the origin. In our simulations, we assume
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Figure 11. Voltage magnitude profile of the circled agent in Figure 5
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|smax,h| = 1.1pmax,h, wherepmax,h is the maximum amount
of active power that can be generated, as suggested in [7],
since inverters are available in discrete sizes and are likely to
be slightly oversized with the respect topmax,h. It turns out
that the amount of reactive power that can be injected by agent
h at time t is a function of|smax,h| and of the injected active
powerph(t), i.e.,

qmax,h(t) =
√

|smax,h|2 − ph(t)2

andqmin,h(t) = −qmax,h(t). In our setup we have verified that
F is nonempty for anyt, namely there is always a feasible
solution. In our simulations, the control actions are performed
every30 seconds. The results are reported in Figure 10 and 11,
where we plotted the daily behavior of the voltage magnitude
of the circled agent in the IEEE37 and in the IEEE123
testbeds, respectively. The optimal solution computed through
a centralized solver.

The following observations are in order. Firstly, when there
are no voltage constraints violations, the trajectories described
by DORPF and f-DORPF are basically the same; in other
words f-DORPF acts as DORPF, thus attaining power losses
minimization. Secondly, during the central hours of the day,
in the IEEE37 testbed an overvoltage occurs due to the
massive increment of active power injected. Notice that, it
takes a while for DORPF to drive the voltage magnitude
below the limit valueUmax; instead, f-DORPF is able to
keep the constraints satisfied (i.e., the overvoltage is avoided)
and generates a trajectory which is very close to the optimal
one. Thirdly, during evening hours, the injection of active
power significantly decreases causing an undervoltage. Again
f-DORPF exhibits a superior performance with the respect to
DORPF; no undervoltage appears in the trajectory depicted by
f-DORPF, while it is not avoided when DORPF is adopted.

The better performance of f-DORPF in tracking the optimal
solution in the more realistic scenario of time-varying loads,
is related to its faster transient property we highlighted in the
previous numerical example and in Section VI.

VIII. C ONCLUSIONS

In this paper we propose and analyze, theoretically and
through simulations, three voltage control strategies. The LVC-
1 and the LVC-2 algorithms are purely local: the agents regu-
late their reactive power output based only on the knowledgeof
the magnitude of their own voltage. Since they do not require
any communication infrastructure, they can be easily imple-
mented but it is not guaranteed that the voltage constraints
are met. Instead, the f-DORPF algorithms is distributed: the
reactive power setpoints are computed by the agents exploiting
both local measurements and information coming from the
neighbors. This cooperation is exploited to not only satisfy
the voltage requirements, but also to achieve the power losses
optimality. The f-DORPF has been designed by combining
DORPF (a distributed algorithm presented in [15] solving
the optimization problem (21)) and LVC-2. Specifically, f-
DORPF inherits the fast transient of LVC-2 and the steady
state optimality property of DORPF. Simulations, illustrating
the effectiveness of f-DORPF, are provided.

APPENDIX

The component wise reactive power update (14) can be
expressed in vectorial form as

qG(t+ 1) =

[

(

I +
αζℑ(M)

UN

− αI
)

qG(t) + αζṼ + αβ

]qmax

qmin

(31)
where

Ṽ =
ℑ(N)

UN

qL +
ℜ [M N ]

UN

[

pG
pL

]

+ 1UN . (32)

Notice thatṼ represents the contribution of the uncontrolled
powerspG, pL, qL to the agents voltage magnitude, i.e.

vG =
ℑ(M)

UN

qG + Ṽ .

Let us definex(t) = qG(t)− qG(k−1). By exploiting the fact
that given the vectorsv, w, a, b and ,‖[v]ba− [w]ba‖ ≤ ‖v−w‖,
it can be easily shown that

‖x(t+ 1)‖ ≤

∥

∥

∥

∥

(

I +
αζℑ(M)

UN

− αI

)∥

∥

∥

∥

‖x(t)‖ (33)

From equation (33), it trivially follows that if

α ≤
2

1− ζρ(ℑ(M))
UN

,

then ‖x(t)‖ → 0 and thenqG(t) → q̄G, i.e. the reactive
power injected reaches the equilibrium̄qG, associated with the
voltages(ū1, . . . , ūm).

The component wise reactive power update (17) can be
expressed in vectorial form as

qG(t+ 1) =

[(

I −
ǫℑ(M)

UN

)

qG(t) + ǫ
(

ud − Ṽ
)

]qmax

qmin

, (34)

where Ṽ is the same defined in equation (32). Similarly to
what done before, let us definex(t) = qG(t) − qG(k − 1).
Then

‖x(t+ 1)‖ ≤

∥

∥

∥

∥

(

I −
ǫℑ(M)

UN

)

x(t)

∥

∥

∥

∥

≤

∥

∥

∥

∥

I −
ǫℑ(M)

UN

∥

∥

∥

∥

‖x(t)‖ (35)

It is thus straightforward to see that if condition (18) holds,
‖x(t)‖ → 0 then qG(t) → q̄G, i.e. the reactive power in-
jected reaches the equilibrium̄qG, associated with the voltages
(ū1, . . . , ūm).

Consider problem (21). Observe that it can be solved
through the standarddual ascentstrategy, whose iterative
updating equations are the following:

qG(t+ 1) =qG(t) + δD(qG(t), λmin(t), λmax(t),

µmax(t), µmin(t))

λmin,h(t+ 1) =
[

λmin,h(t) +
γ

U2
N

(

U
2
min − vh(t)

2)
]∞

0

λmax,h(t+ 1) =
[

λmax,h(t) +
γ

U2
N

(

vh(t)
2 − U

2
max

)

]∞

0

µmin,h(t+ 1) =
[

µmin,h(t) +
γ

2U2
N

(qmin − q̄h)
]∞

0

µmax,h(t+ 1) =
[

µmax,h(t) +
γ

2U2
N

(q̄h − qmax)
]∞

0



9

The expression ofδD(qG, λmin, λmax, µmax, µmin) has been
derived in [15], and is given by

δD(qG, λmin,λmax, µmax, µmin) =

− qG −M−1NqL + sin θ(λmin − λmax)

+M−1(µmin − µmax). (36)

Since problem (21) is convex, standard optimization results
(see [20]) show that, for suitable values ofγ, the dual ascent
strategy converges to(q∗G, λ

∗
min, λ

∗
max, µ

∗
min, µ

∗
max), beingq∗G the

optimizer of problem (21). Letδf be the vector collecting all
the (δf )h’s (defined in equation (23)),h ∈ C. The vectorδf
can be expressed (see [15]) as

δf =ℑ

(

e−jθdiag(ūG)
[

M−1
1 M−1

]

[

u0

uG

])

+M−1(µmin − µmax). (37)

Exploiting the linear model (8), it can be shown that equation
(37) can be rewritten as

δf (qG, λmin,λmax, µmax, µmin) = −qG −M−1NqL

+M−1(µmin − µmax). (38)

Let the equilibrium of the dual ascent strategy be
(q∗G, λ

∗
min, λ

∗
max, µ

∗
min, µ

∗
max). It satisfies the condition

δD(q∗G, λ
∗
min, λ

∗
max, µ

∗
min, µ

∗
max) = 0.

We will show that (q∗G, µ
∗
min, µ

∗
max) is an equilibrium for

the f-DORPF. Let h denote an agent whose multipliers
λ∗
min,h, λ

∗
max,h are equal to zero. In this case, by comparing

(36) and (38), it follows that

δf (q
∗
G, µ

∗
min, µ

∗
max)

= δD(q∗G, λ
∗
min, λ

∗
max, µ

∗
min, µ

∗
max)

= 0.

As a consequence, we have, from (26), thatδh = 0 for all
h ∈ C.

Now, leth denote an agent such that eitherλ∗
min,h or λ∗

max,h
is greater than zero. This implies thatvh is equal to either
Umin or Umax. Consider the case whereλ∗

min,h > 0 and
vh = Umin (the case whereλ∗

max,h > 0 and vh = Umax is
analogous). Beingvh = Umin, from (24) and (25) it turns out
that δUmax,h

> 0 andδUmin,h = 0. Furthermore,

δf,h(q
∗, µ∗

min, µ
∗
max)

≤ δD,h(q
∗, µ∗

min, µ
∗
max, λ

∗
min, λ

∗
max) = 0.

From (26), it follows thatδh = 0. Thus (q∗G, µ
∗
min, µ

∗
max) is

an equilibrium for the f-DORPF.
On the converse, let(q̃G, µ̃min, µ̃max) be an equilibrium of

the f-DORPF algorithm. Firstly, notice that̃qG belongs toF̃ .
In fact, if q̃G /∈ F̃ , then there would be at least an agenth such
that eithervh < Umin andqh = qmax, or vh > Umax andqh =
qmin. Consider the former case (the latter is analogous). From
(??) and (29), it follows that̃µmax,h keeps increasing, and thus
(q̃G, µ̃min, µ̃max) is not an equilibrium. HencẽqG ∈ F̃ . Now,

let us introduce the auxiliary variables̃λmin andλ̃max, defined
as

λ̃min, h =

{

0 if δf,h ≥ 0

−
δf,h
sin θ

if δf,h < 0

λ̃max,h =

{

0 if δf,h ≤ 0
δf,h
sin θ

if δf,h > 0

Observe that both̃λmin and λ̃max have only non-negative
entries and that

δD(q̃G, λ̃min, λ̃max, µ̃min, µ̃max) = 0.

Thus, since the minimizer is unique,q̃G = q∗G.
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